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Master-slave scheme and controlling chaos in the Braiman-Goldhirsch method
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This Brief Report presents a master-slave scheme to demonstrate explicitly how control chaos works in the
Braiman-Goldhirsch method for the one-dimensional map system. The scheme also naturally explains why the
anomalous responses arise in a periodically perturbed, unimodal map system. The extension of the master-
slave scheme to thB-dimensional map is also present¢81063-651X%99)03404-2

PACS numbdss): 05.45—-a, 02.50.Fz

Braiman and GoldhirsctBG) [1] proposed a simple non- tic map, the system becomes,;=4z,(1—2z,)—Y,. The
feedback method, in contrast to the Ott-Grebogi-Yorke feedantimonotonicity, concurrent creation and destruction of pe-
back schemg2], to create stable periodic orbits from a chaosriodic orbits [7,8], appears in the bifurcation diagram for
using weak periodic perturbations. Though there are somsome values o, see Fig. 1. It seems to be in opposition to
successful numerical and experimental demonstrations of thiae well-known numerical fadt9] that the antimonotonicity
BG method3-5], the periodicity and the stability condition could never appear in an unperturbed one-dimensional uni-
of the resulting stable state was not identified analyticallynodal map systenMoreover, referring to Fig. (& and Fig.
until recently[6]. If one considers a generic one-dimensionall(b), one finds that, for perturbation strength between
chaotic map under the influence of a periodic perturbation,

1

Z,11=f(z,) = Yn, (1)
08
wherey, is the added weak perturbation with periodicity
The resulting stable states to the perjpgberturbation in a os |

chaotic map system can only have the periodigjtykp,

wherek is an integer number. Furthermore, using the linear z,
stability analysis, one can deduce that the stability condition, 04|
for the output with the periodicitg=kp, is
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Here,z;, is thej/ times mapping of,, andz, are the roots ~ (a) perturbation strength a
of the periodicity condition 1
z=f(f(- - (F(F (D —yD)—y2) =)= Yikp-1) ~ Yip-
() o2 |
Even though the analysis is presented in an elegant math 0s |

ematical form in Ref[6], providing a more intuitive picture
to illustrate how a chaotic system can be controlled by weakZz,
periodic perturbations is still a worthwhile effort. In this 04
Brief Report, we will introduce a conceptual picture, called
the master-slave scheme, to explain how controlling chaos
works in the BG method. This picture will also gives us a
new handle to understand why the anomalous responses o¢
cur in a dynamical system under the influence of periodic %
perturbations. For example, when a period-2 perturbation
with elementsy,=a, y,=0.2 is added to a chaotic logis-
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(b) perturbation strength a

FIG. 1. Bifurcation diagrams for a periodically perturbed cha-
otic logistic map,z,, 1=4z,(1-2,) —Yy,, wherey, is of period 2

*Electronic address: htsu@mail.ncku.edu.tw and with elementdy;=a, y,=0.2}. With the initial values(a)
Electronic address: yhchen@ibm65.phys.ncku.edu.tw z,=0.54 andb) z;=0.75, 100 data points are collected and plotted
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0.124 and 0.239, the system has two different attractors. This 1
means that the system can become bistable when some sui
able perturbations are included. This result also seems to b 08}
at odds with the fact thahe bistability could not occur in an
unperturbed one-dimensional unimodal mdp the next
paragraph, we will demonstrate that these anomalous re 081
sponses can be interpreted naturally in the master-slavew
scheme. 04 |
To begin with, let us consider a generic map under the
influence of a periogy perturbation{y;,y,, ... yp}: see
Eq. (1). For convenience, we will label the initial data and 02r
the initial perturbation ag; andy,, respectively. The key
idea of the master-slave scheme follows. We divide the origi- 0 o . . .
. . . . 0 0.1 0.2 0.3 0.4 0.5
nal dynamical variablegz, into p new variables, called _
(XM x@ . xPL The relation betweem, and the new perturbation strength a
variablesx) is defined as FIG. 2. Bifurcation diagram for the master equation, Etp),
. versus the perturbatioa The initial point forx{" is 0.54, and 50
Xg'rll)zzpm-*-i , 1sisp. 4 data points are plotted after 2000 transient iterations.
Hence, the original dynamical equation can be separated into
p maps: From linear stability analysis, one can deduce that the
- " stability condition for the period- orbit in the master equa-
X =F(Xm) =1, tion is [M|< 1. The stability quantityV now simply is
(3)— 2y _ 9
X =f(x2) =2, M = &Fk(xgp;yl,yz, oY) . )
5 x(D)
wherex® is one of the roots of the periodicity condition
X' =R ) =yp-1,
XU =F X y1.2, - Yp)- ©)
X2 =100 s
Obviously, in terms of the original dynamical varialaleand
Plugging the first p—1) maps,x@ x& . x® into  the mapf, Eq.(8) and Eq.(9) will reduce to Eq.(2) and Eq.

x() | one finds the map betweed), and x(!), which  (3), respectively.

m !

characterizes the dynamical properties of the original system; NOW, to be more specific, let us take the perturbaygn

let us call itthe master equation to be of period 2 with elements/;=a, y,=0.2. We will
further assume that the system is a chaotic logistic map,
XD =FxYiy1,Y,, ... Vo) f(z)=4z(1—z), before we turn on the perturbation. In this

" special case, the master equation becomes
=f(f( - (FE(X ) —yD=y2) =)= Yp-1) = Yp-
meor P X =4[axP(1-xG) —al[1-axP(1-xP)+a]-0.2,
(6) (10

The remainingo—1 maps, which are just mappingsxif’,  and the slave map is
are designatethe slave equations
X2 =axP(1-xM)—a. (11)
(2) = Dy _
Xm _f(xm ) Y1,
Here, x{) (x{2)) denotes the oddeven part of z,, i.e.,
xP=f(x2)~y,, xV=2z,1(xP=2,...,), and the initial value is labeled
7) x{Y=z,. The bifurcation diagram of the master equation,
Eq. (10), with initial value xgl)=0.54 and for the perturba-
tion a with values between 0.0 and 0.55, is shown in Fig. 2.
The bifurcation diagram indicates that the desired stable
X =f(xP ) —y,_;. periodk orbit will appear if a suitable perturbation is applied
on this chaotic logistic map. For example, period-1 orbit oc-
Since the dynamics of the slave equations are completelgurs whena is between (0.194,0.240); and period-2 orbits
controlled by the master equation, we namehi¢ master- can be generated whenis at (0.170,0.194), (0.240,0.290),
slave scheméAs long as the master equation, E@), isina  or (0.425,0.464); etc. From E¢L1), the bifurcation diagram
stable periodk orbit, then the slave equations indicate thatof the slave map is plotted in Fig. 3. One can see that the
(p—1) images will appear simultaneously. This means thasame periodic orbits also appear exactly in the same regions
there exists a perioldp orbit in the original system. of the perturbatiora. Obviously, the combination of Fig. 2
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FIG. 3. The image!?, which is determined by the slave equa- ' —
tion (11), of the master equatiofi0) versus perurbation strengh e

0.8

and Fig. 3 leads to Fig.(&) exactly. Also, from the numeri-
cal simulation presented in Fig. 1, one can clearly see tha
the periodicity of the stable response in the chaotic map un- —_—
der the influence of a period-2 perturbation ik—2as one  zwh
would have expected. oal
A careful reader may have noticed that there are some
anomalous responses in the bifurcation diagrams of this per
turbed logistic map, which occurs at the regiom
€(0.25,0.45), see Figs. 1-3. These anomalous responses &
called the antimonotonicity that does not exist in an unper- o
turbed logistic map. Since the logistic mé&fw) =rx(1—x)
only has one critical point ax=0.5, it seems to be a di- ()
lemma for those who are familiar with the work of Dawson,
Grebogi, and Koak [9]: if a one-dimensional map %,
=F(x,,a) has at least two critical points that lie in a cha-
otic attractor for a parameter=a*, then generally, F is
antimonotone ai*. Futhermore, Fig. 1 indicates that the
system could fall into different attractors for different initial
values when suitable perturbation strength is applied. The

occurrence of the bistability also cannot be explained in the

framework of an unperturbed one-dimensional unimodafnyl'FimOdal maps. However, QWing to the Compl_exity_ (_)f the
map. However, as has been mentioned in the preceding pargngmal and the perturbed um_mod_al maps, the |den'g|f|cat|0n
graph, the dynamics of a periodically perturbed system iof the anomalous responses in this type of system is unsuc-

governed by the master equation. The right hand side of Ecﬁe?rsr:gl'a lication of the master-slave scheme also can be
(10) is a fourth order polynomial ok{", and this implies PP

that the system is multimodal. Therefore, the antimonotonic-eaSIIy extended to &-dimensional map. Let us consider a

ity and bistability could arise naturally in a periodically per- generic D_-dlmenS|_onz_aI map un_der the influence of a
turbed logistic map. For demonstration, we plot the maps OP-dlmensmnaI periodic perturbation,
the master equation, EqL0), with a=0.2 and 0.14 in Fig.
4(a) and Fig. 4b), respectively. One finds that there are two Zni1=F(Z)) = VYn- (12)
attractive fixed points in Fig.(4), and two attractors—one is
chaotic and the other one is a fixed point in Figo)4 _ _ 1 b
From the master-slave scheme, one knows that the mastktere, z, denotes theD-dimensional vectofz,, ...z},
equation contains almost all the dynamical information and if denotes theD-dimensional mapf{f*, ... f°}, and the
also exhibits the complexity of the dynamics which resultsD-dimensional perturbationg,, {ys, ... ys}, have peri-
from the periodic perturbation, such that the antimonotonicodicities {p*, ... p°} for each component. Based on the
ity and the bistability can be induced in the perturbed uni-same arguments as in R¢6], one finds the periodicity of
modal map as shown in the preceding paragraph. Naturally the output iskp when the periodic perturbations are applied
is expected that the periodic perturbation could also increaseith suitable strength. Herg, is the least common multiple
the complexity of the dynamics in the multimodal map.of {p*, ... ,pP}. The stability of thekp orbits is determined
From numerical results, we find that the complexity of theby the eigenvalues.;,\,, ... Ap of the matrix M with
bifurcation diagrams is indeed increased in the perturbegdomponents

i
(i

0.2

o)

FIG. 4. () The map of the master equation, E40), with a
=0.2, shows that it contains two fixed points;#0.453 and
0.793.(b) There are two attractors, one chaotic and the other one a
fixed point located ax=0.80, for the map of the master equation,
Eq. (10), with a=0.14.
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Here,z; is thej times mapping ok, , andz, are the roots of
the periodicity conditions

z=f(f(- - - (fF (2 —yD—Y2) = )= Ykp-1) ~Yip-
(14)

Again, to apply the master-slave scheme t-dimensional
map, we divide the original vectar, into p new vectors,
called{x{") ,x{?, ... x{P}. The relation betweeg, and the
new vectors<!) are

XV =2ymei,  1<is=p. (15)
Then, the master equation is
XL =FOX3)y1.Ya, - Yp)
=f(f(- - (FER) =YD =Y2) =) =Yp-1) ~Yp,
(16)
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and thep—1 slave equations are
X =f(x2") = Y1,

XP=f(x2) -y,

(17)

X =fak ) = yp1.

Clearly, the master-slave scheme can also be extended to a
D-dimensional mapping system. However, we also could not
identify any anomalous responses in this type of system.

The master-slave scheme presented in this report gives us
a conceptual picture that the periodic perturbation indeed
makes controlling chaos feasible. In this scheme, the master
equation contains almost all the dynamical information, in
particular, it determines whether the attractor is chaotic or
periodic. If one wants to know where in phase space the
system is at other times, then the slave equation must be
used. The scheme also helps us to understand explicitly how
the anomalous responses, antimonotonicity and bistability,
arise in a periodically perturbed one-dimensional unimodal
map.

This work was supported in part by the National Science
Council, Taiwan, under Contract Nos. NSC 88-2112-M006-
017, NSC 87-2112-M006-012, and NSC 87-2811-MO006-
007.

[1] Y. Braiman and |. Goldhirsch, Phys. Rev. Le66, 2545
(1992).

[2] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé#t, 1196
(1990; T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, Na-
ture (London 363 411 (1993; V. In, S. E. Mahan, W. L.
Ditto, and M. L. Spano, Phys. Rev. Le®4, 4420(1999; also
seeCoping with Chaosedited by E. Ott, T. Sauer, and J. A.
Yorke (Wiley, New York, 1995 for more references.

[3] S. T. Vohra, L. Fabiny, and F. Bucholtz, Phys. Rev. L&8,
65 (1995.

[4] P. Colet and Y. Braiman, Phys. Rev.53, 200(1996.

[5] H.-J. Li and J.-L. Chern, Phys. Rev.5, 2118(1996.

[6] R.-R. Hsu, H.-T. Su, J.-L. Chern, and C.-C. Chen, Phys. Rev.
Lett. 78, 2936(1997).

[7]1. Kan, H. Kogk, and J. A. Yorke, Ann. Math136, 219
(1992.

[8] T. C. Newell, V. Kovanis, and A. Gavrielides, Phys. Rev. Lett.
77, 1747(1996.

[9] S. P. Dawson, C. Grebogi, and H. Kalg Phys. Rev. E8§,
1676(1993.



