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Master-slave scheme and controlling chaos in the Braiman-Goldhirsch method
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This Brief Report presents a master-slave scheme to demonstrate explicitly how control chaos works in the
Braiman-Goldhirsch method for the one-dimensional map system. The scheme also naturally explains why the
anomalous responses arise in a periodically perturbed, unimodal map system. The extension of the master-
slave scheme to theD-dimensional map is also presented.@S1063-651X~99!03404-2#

PACS number~s!: 05.45.2a, 02.50.Fz
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Braiman and Goldhirsch~BG! @1# proposed a simple non
feedback method, in contrast to the Ott-Grebogi-Yorke fe
back scheme@2#, to create stable periodic orbits from a cha
using weak periodic perturbations. Though there are so
successful numerical and experimental demonstrations o
BG method@3–5#, the periodicity and the stability conditio
of the resulting stable state was not identified analytica
until recently@6#. If one considers a generic one-dimension
chaotic map under the influence of a periodic perturbatio

zn115 f ~zn!2yn , ~1!

whereyn is the added weak perturbation with periodicityp.
The resulting stable states to the period-p perturbation in a
chaotic map system can only have the periodicityq5kp,
wherek is an integer number. Furthermore, using the lin
stability analysis, one can deduce that the stability condit
for the output with the periodicityq5kp, is

uM u5Z)
j 51

k F )
l 51

p S ] f

]zU
z̄j l

D G Z,1. ~2!

Here,z̄j l is the j l times mapping ofz̄1 , andz̄1 are the roots
of the periodicity condition

z5 f ~ f „•••~ f „f ~z!2y1…2y2!2•••…2ykp21!2ykp .
~3!

Even though the analysis is presented in an elegant m
ematical form in Ref.@6#, providing a more intuitive picture
to illustrate how a chaotic system can be controlled by w
periodic perturbations is still a worthwhile effort. In th
Brief Report, we will introduce a conceptual picture, call
the master-slave scheme, to explain how controlling ch
works in the BG method. This picture will also gives us
new handle to understand why the anomalous response
cur in a dynamical system under the influence of perio
perturbations. For example, when a period-2 perturba
with elements$y15a, y250.2% is added to a chaotic logis
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tic map, the system becomeszn1154zn(12zn)2yn . The
antimonotonicity, concurrent creation and destruction of
riodic orbits @7,8#, appears in the bifurcation diagram fo
some values ofa, see Fig. 1. It seems to be in opposition
the well-known numerical fact@9# that the antimonotonicity
could never appear in an unperturbed one-dimensional u
modal map system. Moreover, referring to Fig. 1~a! and Fig.
1~b!, one finds that, for perturbation strengtha between

FIG. 1. Bifurcation diagrams for a periodically perturbed ch
otic logistic map,zn1154zn(12zn)2yn , whereyn is of period 2
and with elements$y15a, y250.2%. With the initial values~a!
z150.54 and~b! z150.75, 100 data points are collected and plott
after 4000 transient iterations.
4687 ©1999 The American Physical Society
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0.124 and 0.239, the system has two different attractors.
means that the system can become bistable when some
able perturbations are included. This result also seems t
at odds with the fact thatthe bistability could not occur in an
unperturbed one-dimensional unimodal map. In the next
paragraph, we will demonstrate that these anomalous
sponses can be interpreted naturally in the master-s
scheme.

To begin with, let us consider a generic map under
influence of a period-p perturbation$y1 ,y2 , . . . ,yp%; see
Eq. ~1!. For convenience, we will label the initial data an
the initial perturbation asz1 and y1 , respectively. The key
idea of the master-slave scheme follows. We divide the or
nal dynamical variableszn into p new variables, called
$xm

(1) ,xm
(2) , . . . ,xm

(p)%. The relation betweenzn and the new
variablesxm

( i ) is defined as

xm
~ i !5zpm1 i , 1< i<p. ~4!

Hence, the original dynamical equation can be separated
p maps:

xm
~2!5 f ~xm

~1!!2y1 ,

xm
~3!5 f ~xm

~2!!2y2 ,

••• ~5!

xm
~p!5 f ~xm

~p21!!2yp21 ,

xm11
~1! 5 f ~xm

~p!!2yp .

Plugging the first (p21) maps,xm
(2) ,xm

(3) , . . . ,xm
(p) , into

xm11
(1) , one finds the map betweenxm11

(1) and xm
(1) , which

characterizes the dynamical properties of the original syst
let us call it the master equation:

xm11
~1! 5F~xm

~1! ;y1 ,y2 , . . . ,yp!

5 f ~ f „•••~ f „f ~xm
~1!!2y1…2y2!2•••…2yp21!2yp .

~6!

The remainingp21 maps, which are just mappings ofxm
(1) ,

are designatedthe slave equations:

xm
~2!5 f ~xm

~1!!2y1 ,

xm
~3!5 f ~xm

~2!!2y2 ,

~7!

•••

xm
~p!5 f ~xm

~p21!!2yp21 .

Since the dynamics of the slave equations are comple
controlled by the master equation, we name itthe master-
slave scheme. As long as the master equation, Eq.~6!, is in a
stable period-k orbit, then the slave equations indicate th
(p21) images will appear simultaneously. This means t
there exists a period-kp orbit in the original system.
is
uit-
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From linear stability analysis, one can deduce that
stability condition for the period-k orbit in the master equa
tion is uM u,1. The stability quantityM now simply is

M5S ]

]x
Fk~xm

~1! ;y1 ,y2 , . . . ,yp! D U
x̄~1!

, ~8!

wherex̄(1) is one of the roots of the periodicity condition

x̄~1!5Fk~ x̄m
~1! ;y1 ,y2 , . . . ,yp!. ~9!

Obviously, in terms of the original dynamical variablezn and
the mapf, Eq. ~8! and Eq.~9! will reduce to Eq.~2! and Eq.
~3!, respectively.

Now, to be more specific, let us take the perturbationyn
to be of period 2 with elements$y15a, y250.2%. We will
further assume that the system is a chaotic logistic m
f (z)54z(12z), before we turn on the perturbation. In th
special case, the master equation becomes

xm11
~1! 54@4xm

~1!~12xm
~1!!2a#@124xm

~1!~12xm
~1!!1a#20.2,

~10!

and the slave map is

xm
~2!54xm

~1!~12xm
~1!!2a. ~11!

Here, xm
(1) (xm

(2)) denotes the odd~even! part of zm , i.e.,
xm

(1)5z2m11(xm
(2)5z2m12), and the initial value is labeled

x0
(1)5z1 . The bifurcation diagram of the master equatio

Eq. ~10!, with initial value x0
(1)50.54 and for the perturba

tion a with values between 0.0 and 0.55, is shown in Fig.
The bifurcation diagram indicates that the desired sta
period-k orbit will appear if a suitable perturbation is applie
on this chaotic logistic map. For example, period-1 orbit o
curs whena is between (0.194,0.240); and period-2 orb
can be generated whena is at (0.170,0.194), (0.240,0.290)
or (0.425,0.464); etc. From Eq.~11!, the bifurcation diagram
of the slave map is plotted in Fig. 3. One can see that
same periodic orbits also appear exactly in the same reg
of the perturbationa. Obviously, the combination of Fig. 2

FIG. 2. Bifurcation diagram for the master equation, Eq.~10!,
versus the perturbationa. The initial point forx0

(1) is 0.54, and 50
data points are plotted after 2000 transient iterations.
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and Fig. 3 leads to Fig. 1~a! exactly. Also, from the numeri-
cal simulation presented in Fig. 1, one can clearly see
the periodicity of the stable response in the chaotic map
der the influence of a period-2 perturbation is 2k—as one
would have expected.

A careful reader may have noticed that there are so
anomalous responses in the bifurcation diagrams of this
turbed logistic map, which occurs at the regiona
P(0.25,0.45), see Figs. 1–3. These anomalous response
called the antimonotonicity that does not exist in an unp
turbed logistic map. Since the logistic mapf (z)5rx(12x)
only has one critical point atx50.5, it seems to be a di
lemma for those who are familiar with the work of Dawso
Grebogi, and Koc¸ak @9#: if a one-dimensional map xn11
5F(xn ,a) has at least two critical points that lie in a cha
otic attractor for a parametera5a* , then generally, F is
antimonotone ata* . Futhermore, Fig. 1 indicates that th
system could fall into different attractors for different initi
values when suitable perturbation strength is applied.
occurrence of the bistability also cannot be explained in
framework of an unperturbed one-dimensional unimo
map. However, as has been mentioned in the preceding p
graph, the dynamics of a periodically perturbed system
governed by the master equation. The right hand side of
~10! is a fourth order polynomial ofxm

(1) , and this implies
that the system is multimodal. Therefore, the antimonoton
ity and bistability could arise naturally in a periodically pe
turbed logistic map. For demonstration, we plot the maps
the master equation, Eq.~10!, with a50.2 and 0.14 in Fig.
4~a! and Fig. 4~b!, respectively. One finds that there are tw
attractive fixed points in Fig. 4~a!, and two attractors—one i
chaotic and the other one is a fixed point in Fig. 4~b!.

From the master-slave scheme, one knows that the ma
equation contains almost all the dynamical information an
also exhibits the complexity of the dynamics which resu
from the periodic perturbation, such that the antimonoton
ity and the bistability can be induced in the perturbed u
modal map as shown in the preceding paragraph. Natura
is expected that the periodic perturbation could also incre
the complexity of the dynamics in the multimodal ma
From numerical results, we find that the complexity of t
bifurcation diagrams is indeed increased in the pertur

FIG. 3. The imagexm
(2) , which is determined by the slave equ

tion ~11!, of the master equation~10! versus perurbation strengtha.
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multimodal maps. However, owing to the complexity of th
original and the perturbed unimodal maps, the identificat
of the anomalous responses in this type of system is un
cessful.

The application of the master-slave scheme also can
easily extended to aD-dimensional map. Let us consider
generic D-dimensional map under the influence of
D-dimensional periodic perturbation,

zn115f~zn!2yn . ~12!

Here, zn denotes theD-dimensional vector$zn
1 , . . . ,zn

D%,
f denotes theD-dimensional map$ f 1, . . . ,f D%, and the
D-dimensional perturbationsyn , $yn

1 , . . . ,yn
D%, have peri-

odicities $p1, . . . ,pD% for each component. Based on th
same arguments as in Ref.@6#, one finds the periodicity of
the output iskp when the periodic perturbations are appli
with suitable strength. Here,p is the least common multiple
of $p1, . . . ,pD%. The stability of thekp orbits is determined
by the eigenvaluesl1 ,l2 , . . . ,lD of the matrix M with
components

FIG. 4. ~a! The map of the master equation, Eq.~10!, with a

50.2, shows that it contains two fixed points atx̄50.453 and
0.793.~b! There are two attractors, one chaotic and the other on

fixed point located atx̄50.80, for the map of the master equatio
Eq. ~10!, with a50.14.
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Mab5 (
l 1 ,l 2 , . . . ,l d

S ]fa

]zl 1
U

z̄kp

D
3S ]fl 1

]zl 2
U

z̄kp21

D •••S ]fl kp22

]zl kp21
U

z̄2

D S ]fl kp21

]zb U
z̄1

D .

~13!

Here,z̄j is the j times mapping ofz̄1 , andz̄1 are the roots of
the periodicity conditions

z5f~ f„•••~ f„f~z!2y1…2y2!2•••…2ykp21!2ykp .
~14!

Again, to apply the master-slave scheme to aD-dimensional
map, we divide the original vectorzn into p new vectors,
called$xm

(1) ,xm
(2) , . . . ,xm

(p)%. The relation betweenzn and the
new vectorsxm

( i ) are

xm
~ i !5zpm1 i , 1< i<p. ~15!

Then, the master equation is

xm11
~1! 5F~xm

~1! ;y1 ,y2 , . . . ,yp!

5f~ f„•••~ f„f~xm
~1!!2y1…2y2!2•••…2yp21!2yp ,

~16!
a-

.

and thep21 slave equations are

xm
~2!5f~xm

~1!!2y1 ,

xm
~3!5f~xm

~2!!2y2 ,
~17!

•••

xm
~p!5f~xm

~p21!!2yp21 .

Clearly, the master-slave scheme can also be extended
D-dimensional mapping system. However, we also could
identify any anomalous responses in this type of system

The master-slave scheme presented in this report give
a conceptual picture that the periodic perturbation inde
makes controlling chaos feasible. In this scheme, the ma
equation contains almost all the dynamical information,
particular, it determines whether the attractor is chaotic
periodic. If one wants to know where in phase space
system is at other times, then the slave equation mus
used. The scheme also helps us to understand explicitly
the anomalous responses, antimonotonicity and bistabi
arise in a periodically perturbed one-dimensional unimo
map.
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@7# I. Kan, H. Koçak, and J. A. Yorke, Ann. Math.136, 219

~1992!.
@8# T. C. Newell, V. Kovanis, and A. Gavrielides, Phys. Rev. Le

77, 1747~1996!.
@9# S. P. Dawson, C. Grebogi, and H. Koc¸ak, Phys. Rev. E48,

1676 ~1993!.


